Compositional Verification of Concurrent Systems by Combining Bisimulations

Frédéric Lang, Radu Mateescu

Inria, LIG, Université Grenoble Alpes (Grenoble, France)

http://convecs.inria.fr

Franco Mazzanti ISTI-CNR (Pisa, Italy)

http://fmt.isti.cnr.it

Motivation

- Explicit-state model checking of concurrent system
 - ► Asynchronous model P₁||...||P_n
 - ► LTS (Labelled Transition System) semantics
 - Action-based modal μ-calculus property φ
- PUT_0 GET_1 GET_1

 6 0 7

 GET_0 PUT_0 GET_1 PUT_1

 3 GET_1 5 PUT_0 1

- Problem: state-space explosion
- Compositional verification can circumvent explosion
 - ▶ Apply to $P_1 | 1... | P_n$ LTS reductions that preserve φ
 - ► Mateescu & Wijs (2014) define φ-preserving reductions: action hiding and quotient wrt. strong **or** divbranching bisimulation
 - Applied sucessfully to many case studies
- We refine the approach by combining both bisimulations

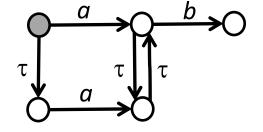
Outline

- 1. Background
- 2. The mono-bisimulation approach of Mateescu & Wijs
- 3. Our refined approach combining bisimulations
- 4. Applications and experimental results
- 5. Conclusion

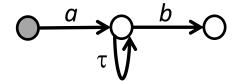
1. Background

Divbranching bisimulation (van Glabbeek & Weijland, 1996)

- Short for divergence-preserving branching bisimulation
- Weaker than strong bisimulation: special treatment of invisible (τ) transitions
- Preserves choices of visible actions and infinite sequences of τ -transitions
- Example:



is divbranching bisimilar to:



■ Like strong, divbranching is a congruence for | | ⇒ reduction applicable compositionally

Compositional reduction

- Alternation between n-ary compositions/reductions (rcomp_n), until all processes are aggregated
- Many strategies are possible Example: P₁||P₂||P₃
 - ightharpoonup rcomp₁ (P₁), rcomp₁ (P₂), rcomp₁ (P₃)))),
 - ightharpoonup rcomp₂ (rcomp₁ (P₁), rcomp₁ (P₂))), rcomp₁ (P₃))), ...
- LTS constrain each others by synchronization
- Aim: maintain the "largest intermediate LTS size" small
- No optimal strategy available: heuristic is needed
- We use smart reduction (Crouzen & Lang, 2011)

The action-based modal mu-calculus L_{μ} (Kozen, 1983)

- Temporal logic interpreted over LTS
- Action formulas:

$$\alpha := a \mid \text{false} \mid \neg \alpha \mid \alpha_1 \vee \alpha_2$$

Notation: $[[\alpha]]$ set of actions satisfying α

State formulas:

$$\phi ::=$$
 false $|\neg \phi_0| < \alpha > \phi_0 | \phi_1 \lor \phi_2 | \mu X. \phi_0 | X$

Notation: $P = \varphi$

 $P = \phi$ LTS P satisfies ϕ

- Derived operators: **true** | $[\alpha] \phi_0 | \phi_1 \wedge \phi_2 | vX. \phi_0$
- Subsumes (action-based) CTL, ACTL, PDL, PDL- Δ , etc.

2. The mono-bisimulation approach of Mateescu & Wijs

The mono-bisimulation approach

Find actions a₁, ..., a_m and relation R among divbranching and strong bisimulations, such that φ can be verified on R reduction of hide a₁, ..., a_m in P₁||...||P_n instead of P₁||...||P_n

- Procedure $H(\varphi)$ computes the largest set $a_1, ..., a_m$ $H(\varphi) = \bigcap h(\alpha)$ $h(\alpha) = \text{if } \tau \in [[\alpha]] \text{ then } [[\alpha]] \text{ else all but } [[\alpha]]$ Example: $H(\mu X. < \alpha > \text{true} \lor < \text{true} > X) = \text{all but } \alpha$
- A fragment $L_{\mu-db}$ of L_{μ} is defined such that:
 - ightharpoonup R is divbranching if $\varphi \in L_{u-db}$
 - ► *R* is **strong** otherwise (less reduction)

The fragment $L_{\mu-db}$

Strong modalities $\langle \alpha \rangle \phi$ are replaced by weak modalities:

$$\phi ::=$$
 false $|\neg \phi_0| \phi_1 \lor \phi_2 | \mu X. \phi_0 | X$

$$| < (\phi_1?. \ \alpha_\tau)^* > \phi_2$$

there is a sequence of actions satisfying α_{τ} that traverses only states satisfying ϕ_1 and ends in a state satisfying ϕ_2

$$| < (\phi_1?. \alpha_\tau)^*. \phi_1?. \alpha_a > \phi_2$$

there is a sequence of actions satisfying α_{τ} that traverses only states satisfying ϕ_{1} and ends in a state satisfying $<\alpha_{a}>\phi_{2}$

$$| < \varphi_1?. \alpha_{\tau} > @$$

there is an infinite sequence of actions satisfying α_{τ} that traverses only states satisfying ϕ_1

where $\tau \in [[\alpha_{\tau}]], \tau \notin [[\alpha_{\sigma}]]$

Expressiveness of $L_{\mu-db}$

Translation to L_{u-db} is possible for the following operators:

■ PDL-
$$\Delta$$
: $\langle \alpha_{\tau}^* \rangle \phi_0$ $\langle \alpha_{\tau}^* . \alpha_q \rangle \phi$ $\langle \alpha_{\tau} \rangle @$

■ ACTL:
$$\mathbf{A} (\varphi_1 \alpha_1 \mathbf{U} \varphi_2)$$
 $\mathbf{A} (\varphi_1 \alpha_1 \mathbf{U}_{\alpha 2} \varphi_2)$ $\mathbf{AG}_{\alpha 0} (\varphi_0)$ $\mathbf{E} (\varphi_1 \alpha_1 \mathbf{U} \varphi_2)$ $\mathbf{E} (\varphi_1 \alpha_1 \mathbf{U}_{\alpha 2} \varphi_2)$ $\mathbf{EF}_{\alpha 0} (\varphi_0)$

 $(\mu\text{-ACTL}\X$ is slightly less expressive than $L_{\mu\text{-db}}$)

■ CTL:
$$\mathbf{A} (\phi_1 \mathbf{U} \phi_2) \mathbf{A} (\phi_1 \mathbf{W} \phi_2) \mathbf{A} \mathbf{G} (\phi_0)$$
 $\mathbf{A} \mathbf{F} (\phi_0)$ $\mathbf{E} (\phi_1 \mathbf{U} \phi_2) \mathbf{E} (\phi_1 \mathbf{W} \phi_2) \mathbf{E} \mathbf{F} (\phi_0)$ $\mathbf{E} \mathbf{G} (\phi_0)$

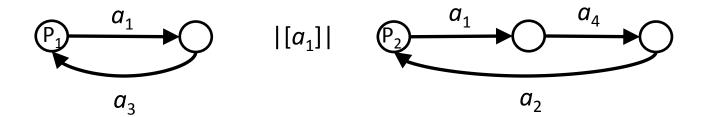
A (([
$$\alpha_a$$
] ϕ_1) **U** ϕ_2) **A** (([α_a] ϕ_1) **W** ϕ_2)

AG
$$(\phi_1 \vee [\alpha_a] \phi_2)$$
 EF $(\phi_1 \wedge \langle \alpha_a \rangle \phi_2)$

where
$$\phi_0, \phi_1, \phi_2 \in L_{u-db}, \tau \in [[\alpha_{\tau}]], \tau \notin [[\alpha_{q}]]$$

New result

Compositional verification example

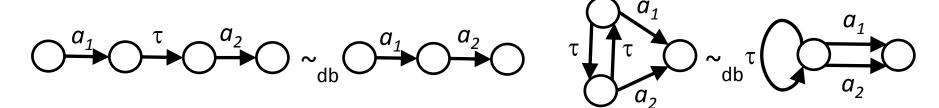


- - \Rightarrow Largest LTS: **3 states / 3 transitions** (P₂)
- $φ_2 = [\text{true}^*.a_1.a_2] \text{ false} \not\in L_{\mu\text{-db}}$ smart strong reduction of hide all but a_1 , a_2 in $(P_1 \mid [a_1] \mid P_2) \mid = φ_2$
 - ⇒ Largest LTS: 6 states / 8 transitions

3. Our refined approach combining bisimulations

Principles

- Such formulas are not preserved by divbranching



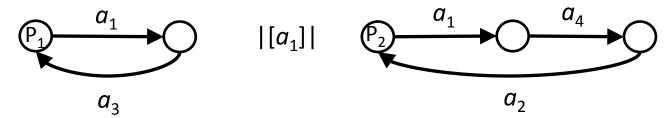
- Theorem: If no action of some P_i is matched by a strong modality then P_i can be reduced for divbranching
- We write $\varphi \in L_{\mu\text{-str}}(A_s)$ and call A_s the set of strong actions if all strong modalities of φ satisfy $[[\alpha]] \subseteq A_s$

Examples: [true*. $a_1.a_2$] false $\in L_{\mu\text{-str}}(\{a_2\})$ $L_{\mu\text{-db}} = L_{\mu\text{-str}}(\emptyset)$

New verification strategy

- Partitioning the set of processes
 - \triangleright \mathscr{P}_s : processes among P_1 , ..., P_n containing strong actions
 - $\triangleright \mathscr{P}_{w} = \{P_{1}, ..., P_{n}\} \setminus \mathscr{P}_{s}$: processes not containing strong actions
- Refactoring $P_1 | | ... | | P_n$ into $(||_{P_s \in \mathscr{I}_s} P_s) | | (||_{P_w \in \mathscr{I}_w} P_w)$
- Reducing the sets of processes compositionally according to theorem:
 - ▶ Q = smart divbranching reduction of $(||_{P^w \in \mathscr{P}_w} P_w)$
 - ▶ Q' = smart strong reduction of $(||_{P_s \in \mathscr{I}_s} P_s) || Q$
- Finally checking hide $H(\phi)$ in $Q' = \phi$

Example



- $\varphi_2 = [\text{true}^*.a_1.a_2] \text{ false} \in \mathsf{L}_{\mu\text{-str}}(\{a_2\})$ smart strong reduction of hide all but a_1 , a_2 in ((smart divbranching reduction of $-a_2 \notin \mathsf{P}_1$ hide all but a_1 in P_1) $|[a_1]|$ (smart strong reduction of $-a_2 \in \mathsf{P}_2$ hide all but a_1 , a_2 in P_2)) $|=\varphi_2$
- ⇒ Largest LTS: **3 states / 3 transitions** instead of 6 states / 8 transitions

Extracting A_s from the formula

- Problem: Given $\varphi \in L_{\mu}$, how to infer A_s s.t. $\varphi \in L_{\mu\text{-str}}(A_s)$?
- Hard for arbitrary low-level L_μ formula
 - ▶ Need to prove that a strong modality can be turned to weak one
 - ► Analogy: prove that binary code implements function correctly
- Easier for higher-level logics (CTL, ACTL, PDL, PDL- Δ): Use knowledge of $L_{\mu\text{-db}}$ expressiveness (patterns) Example: A (([a] false) U true) $\in L_{\mu\text{-str}}(\{b\})$ because A (([α_a] φ_1) U φ_2) $\in L_{\mu\text{-db}}$ and true $\in L_{\mu\text{-str}}(\{b\})$
- \blacksquare A_s can be safely over-approximated, but smaller is better
- Automatic extraction of minimal A_s faces issues

Issues with extracting a minimal A_s

- Issue 1: It requires semantic reasoning
 - ► **Example**: in AG ($\langle a \rangle$ true \Rightarrow [α] ϕ_0), α seems to be strong In fact it is not as this formula is equivalent to AG ([α] ϕ_0)
 - L_{ιι} satisfiability checking (EXPTIME) might be necessary
- Issue 2: minimal A_s is not unique
 - **Example**: $φ = \langle (\langle a_1 \rangle \text{ true} \land \langle a_2 \rangle \text{ true}) \notin \mathsf{L}_{\mu\text{-str}}(\emptyset)$ $φ ≡ \langle (\langle a_1 \rangle \text{ true})^*.\langle a_1 \rangle \text{ true} ?.a_2 \rangle \text{ true} \in \mathsf{L}_{\mu\text{-str}}(\{a_1\})$ $φ ≡ \langle (\langle a_2 \rangle \text{ true} ?.\text{true})^*.\langle a_2 \rangle \text{ true} ?.a_1 \rangle \text{ true} \in \mathsf{L}_{\mu\text{-str}}(\{a_2\})$
 - \triangleright a_1 and a_2 can be weak actions but not both simultaneously
 - ▶ Choosing one or the other may impact performance
- In general: rely on expertise, side proof needed

4. Applications and experimental results

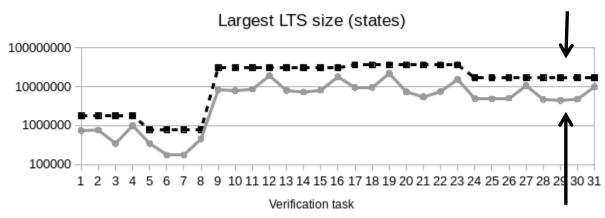
Implementation

- Approach implemented using CADP toolbox (cadp.inria.fr)
 - ▶ Formal verification of asynchronous concurrent systems
 - ► Toolbox developed since the late 80's (≈ 70 tools and libraries)
- Several software components used in this work:
 - ► LNT.OPEN/GENERATOR: compiling LNT processes to LTS
 - ► EXP.OPEN 2/GENERATOR: composing LTS in parallel
 - ▶ BCG_MIN 2: minimizing LTS for strong and divbranching
 - ► BCG_OPEN/EVALUATOR 4: model checking MCL temporal logic (regular alternation-free modal mu-calculus with data)
 - ▶ SVL: scripting, smart compositional verification heuristic
- Successful application to several examples

TFTP (Trivial File Transfer Protocol)

- Avionics case study (Garavel&Thivolle, 2009)
- 31 verification tasks involve properties that contain both weak and strong modalities
- Comparison with the mono-bisimulation approach
- Result: largest LTS up to 7 times smaller

mono-bisimulation



Gains in CPU time and memory peak are similar

combined bisimulations

RERS (Rigorous Evaluation of Reactive Systems)

- Verification competition http://rers-challenge.org
- RERS 2018 "parallel CTL" benchmark
 - ▶ 3 concurrent models (101...103) with 9 to 34 parallel processes
 - 9 properties 3 per model (21..23)
- 7 properties combine weak and strong modalities
- Mono-bisimulation: explosion for 5 properties
- Combined bisimulations approach is successful
 - ▶ 4 properties from 5 to 10 min. and from 22 to 101 MB
 - ▶ 1 property: 42 min. and 1.6 GB

RERS - CTL example (103#23)

- AG (<A34> true \Rightarrow [A34] A ([A68] false W <A59> true)) checked on a composition of 34 processes (70 actions)
 - ► All but A34, A59, A68 can be hidden (67 actions)
 - ► A34, A68 are weak, formula belongs to $L_{\mu-str}({A59})$
- Mono-bisimulation (strong) does not prevent explosion
 - Stopped after several hours
 - ▶ Largest LTS: \geq **4.5 Giga states / 36 Giga transitions** $\frac{1}{\sqrt{3}}$ Grid

- Combining bisimulations is successful
 - ▶ Strong action in 7 proc. \Rightarrow 27 proc. reduced for divbranching
 - ► Result true after < 10 min CPU, using 35 MB memory
 - Largest LTS: 122,292 states / 888,156 transitions

5. Conclusion

- Improvement of property-preserving LTS reductions
 - New strategy combining bisimulations applicable to properties not preserved by divbranching bisimulation
 - Based on property analysis, classifying actions as weak or strong
 - ▶ Big LTS reductions wrt. mono-bisimulation
 - ▶ Proofs and examples available at doi.org/10.5281/zenodo.2634148
- Future work:
 - ► Automate A_s computation or automatically check user-given A_s
 - ▶ Automate composition refactoring $(||_{P_s \in \mathscr{I}_s} P_s) || (||_{P_w \in \mathscr{I}_w} P_w)$
 - ▶ Approach further refined ⇒ gold medals won at RERS 2019

